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Abstract

A fundamental question in neurolinguistics concerns the brain regions involved in syntactic

and semantic processing during speech comprehension, both at the lexical (word

processing) and supra-lexical levels (sentence and discourse processing). To what extent

are these regions separated or intertwined? To address this question, we introduce a novel

approach exploiting neural language models to generate high-dimensional feature sets that

separately encode semantic and syntactic information. More precisely, we train a lexical

language model, Glove, and a supra-lexical language model, GPT-2, on a text corpus from

which we selectively removed either syntactic or semantic information. We then assess to

what extent the features derived from these information-restricted models are still able to

predict the fMRI time-courses of humans listening to naturalistic text. Furthermore, to

determine the windows of integration of brain regions involved in supra-lexical processing,

we manipulate the size of contextual information provided to GPT-2. The analyses show

that, while most brain regions involved in language comprehension are sensitive to both

syntactic and semantic features, the relative magnitudes of these effects vary across these

regions. Moreover, regions that are best fitted by semantic or syntactic features are more

spatially dissociated in the left hemisphere than in the right one, and the right hemisphere

shows sensitivity to longer contexts than the left. The novelty of our approach lies in the

ability to control for the information encoded in the models’ embeddings by manipulating

the training set. These "information-restricted" models complement previous studies that

used language models to probe the neural bases of language, and shed new light on its

spatial organization.
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Information-Restricted Neural Language Models Reveal Different Brain

Regions’ Sensitivity to Semantics, Syntax and Context

Author summary

The study of how the brain processes language, and in particular sentence meaning

(semantics) and structure (syntax), is crucial for improving language therapies and

technologies. Yet, identifying the specific brain regions involved in these processes is

challenging because they are interconnected. To solve this problem, we developed an

approach that produces Artificial Intelligence (AI) models of different linguistic aspects of

a story, like semantic or syntactic information. We first trained AI models on texts from

which we removed either syntactic or semantic information. We then compared the fMRI

brain activity of individuals listening to a story with the syntactic or semantic AI-derived

models on the same story. If these models align with a specific brain region, then we

assume that the model and the region likely encode the same information. By doing this,

we identified brain regions involved in processing word meaning, sentence structure, and

contextual information. The novelty of our method lies in the ability to control for the

information inside models. Our approach complements previous studies that used AI

models to find the brain regions processing language, and sheds new light on their spatial

organization.

Introduction

Understanding the neural bases of language processing has been one of the main

research efforts in the neuroimaging community for the past decades (see, e.g., Binder

et al., 2009; Friederici, 2011, for reviews). However, the complex nature of language makes

it difficult to discern how the various processes underlying language processing are

topographically and dynamically organized in the human brain, and therefore many

questions remain open to this date.

One central open question is whether semantic and syntactic information are

encoded and processed jointly or separately in the human brain. Language comprehension
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requires to access word meanings (lexical semantics), but also to compose these meanings

to construct the meaning of entire sentences. In languages such as English, the meaning of

a sentence strongly depends on word order – for example, ‘The boy kissed the girl’ has a

different meaning than ‘The girl kissed the boy’ although both sentences contain the exact

same words (in other languages, inflectional cues rather than word order signal the roles of

words in the sentence). Importantly, meaning construction of new sentences would be

roughly done in the same way if only the structure of the sentences remains the same (‘The

X kissed the Y’), independently of the lexical meanings of the single nouns in the sentences

(‘boy’ and ‘girl’). This combinatorial property of language allows to construct meanings of

sentences that we have never heard before and suggests that it might be computationally

advantageous for the brain to have developed neural mechanisms for composition that are

separate from those dedicated to the processing of lexico-semantic content. Such neural

mechanisms for composition would be sensitive to only the abstract structure of sentences

and would implement the syntactic rules according to which sentence parts should be

composed.

Following related considerations, the dominant view over the past decades claimed

that syntactic information is represented and processed in specialized brain regions, akin to

the classic modular view (Chomsky, 1984; Fodor, 1983). Neuronal modularity of language

processing gained support from early lesion studies suggesting that syntactic processing

takes place in localized and specialized brain regions such as Broca’s area, showing double

dissociations between syntactic and semantic processing (Caramazza & Zurif, 1976;

Goodglass, 1993). Neuroimaging studies (Embick, 2000; Friederici et al., 2017; Friederici

et al., 2006; Garrard et al., 2004; Grodzinsky & Santi, 2008; Hagoort, 2014; Hashimoto &

Sakai, 2002; Matchin & Hickok, 2020; Pallier et al., 2011; Shetreet & Friedmann, 2014;

Vigliocco, 2000) as well as simulation work on language acquisition and processing in

artificial neural language models (Lakretz et al., 2021; Lakretz et al., 2019; O’Reilly &

Frank, 2006; Russin et al., 2019; Ullman, 2004) have provided further support to this view
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since then.

However, in parallel, an opposing view has argued that semantics and syntax are

processed in a common distributed language processing system (Bates & Dick, 2002; Bates

& MacWhinney, 1989; Dick et al., 2001). Recent work in support of this view has raised

concerns regarding the replicability of some of the early results from the modular view

(Siegelman et al., 2019) and provided evidence that semantic and syntactic processing in

the language network might not be so easily dissociated from one another (Fedorenko

et al., 2020; Mollica et al., 2018).

Neuroimaging studies, cited to defend one or the other view, have mainly relied on

one of two methodological approaches: on the one hand, controlled experimental

paradigms, which manipulate the words or sentences (Bottini et al., 1995; Caplan et al.,

1998; Mazoyer et al., 1993; Pallier et al., 2011; Stromswold et al., 1996) and, on the other

hand, naturalistic paradigms that make use of stimuli closer to what one could find in a

daily environment. The former approach probes linguistic dimensions in one of the

following ways: varying the presence or absence of syntactic or semantic information

(Friederici, Kotz, et al., 2009; Friederici et al., 2003) or varying the syntactic structure

difficulty or the semantic interpretation difficulty (e.g. Cooke et al., 2001; Friederici,

Makuuchi, et al., 2009; Kinno et al., 2007; Newman et al., 2010; Santi & Grodzinsky,

2010). However, the conclusions from such studies may be bounded to the peculiarity of

the task and setup used in the experiment (Nastase et al., 2020). To overcome these

shortcomings, over the last years, researchers have become increasingly interested in data

using “Ecological Paradigms”, in which participants are engaged in more natural tasks,

such as conversation or story listening (LeBel et al., 2022; Lerner et al., 2011; Nastase

et al., 2021; Pasquiou et al., 2022; Regev et al., 2013; Wehbe et al., 2014). This avoids any

task-induced bias and takes into consideration both lexical and supra-lexical levels of

syntax and semantic processing. Integrating supra-lexical level information is essential for

understanding language processing in the brain, because the lexical-semantic information
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of a word and the resulting semantic compositions depend on its context.

More recently, following advances in natural language processing, neural language

models have been increasingly employed in the analysis of data collected from ecological

paradigms. Neural language models are models based on neural networks, which are

trained to capture joint probability distributions of words in sentences using next-word, or

masked-word prediction tasks Devlin et al. (e.g. 2019), Elman (1991), Pennington et al.

(2014), and Radford et al. (2019). By doing so, the models have to learn semantic and

syntactic relations among word tokens in the language. To study brain data collected from

ecological paradigms, neural language models are presented with the same sentence stimuli,

then, their activations (aka, embeddings) are extracted and used to fit and predict the

brain data (Caucheteux & King, 2022; Huth et al., 2016; Pasquiou et al., 2022; Wehbe

et al., 2014). This approach has led to several discoveries, such as wide networks associated

with semantic processing uncovered by Huth et al. (2016) using word embeddings (see also

Pereira et al. (2018a)), or context-sensitivity maps discovered by Jain and Huth (2018) and

Toneva and Wehbe (2019).

Despite these advances and extensive neuroscientific and cognitive explorations, the

neural bases of semantics, syntax and the integration of contextual information still remain

debated. In particular, a central puzzle remains in the field: on the one hand, studies

investigating syntax and semantics found vastly distributed networks when using

naturalistic stimuli (Caucheteux et al., 2021; Fedorenko et al., 2020) and others found more

localized activations for syntax, typically in inferior frontal and posterior temporal regions,

when using constrained experimental paradigms e.g., (Matchin et al., 2017; Pallier et al.,

2011). Thus, whether there is a hierarchy of brain regions integrating contextual

information or the extent to which syntactic information is independently processed from

semantic information, in at least some brain regions, remains largely debated to date.

So far, insights from neural language models about this central puzzle were also

rather limited. This is mostly due to the complexity of the models in terms of size, training
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and architecture. This complexity makes it difficult to identify how and what information

is encoded in their latent representations, and how to use their embeddings to study brain

function.

Caucheteux et al. (2021) used a neural language model, GPT-2, in an novel way to

separate semantic and syntactic processing in the brain. Specifically, using a pre-trained

GPT-2 model, they built syntactic predictors by averaging the embeddings of words from

sentences that shared syntactic but no semantic properties, and used them to identify

syntactic-sensitive brain regions. They defined as semantic-sensitive brain regions, the

regions that were better predicted by the GPT-2’s embeddings computed on the original

text, compared to the syntactic predictors. They observed that syntax and semantics,

defined in this way, rely on a common set of distributed brain areas.

Jain and Huth (2018) used pre-trained LSTM models to study context integration.

They varied the amount of context used to generate word embeddings, and obtained a map

indicating brain regions’ sensitivity to different sizes of context.

Here, we propose a new approach to tackle the questions of syntactic vs. semantic

processing and contextual integration, by fitting brain activity with word embeddings

derived from information-restricted models. By this, we mean that the models are trained

on text corpora from which specific types of information (syntactic, semantic, or

contextual) were removed. We then assess the ability of these information-restricted

models to fit brain activations, and compared it to the predictive performance of a neural

model trained on the integral dataset.

More precisely, we created a text corpus of novels from the Gutenberg Project

(http://www.gutenberg.org) and used it to define three different sets of features: (i)

Integral features, the full text from the corpus (ii) Semantic features, the content words

from the corpus; (iii) Syntactic features, where each word and punctuation sign from the

corpus is replaced by syntactic characteristics. We then trained two types of models on

each feature space: a non-contextual model, Glove (Pennington et al., 2014), and a
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contextual model, GPT-2 (Radford et al., 2019) (See Fig. 1A). The text transcription of the

audio-book, that participants listened to in the scanner, was then presented to the neural

language models from which we derived embedding vectors. After fitting these embedded

representations to fMRI brain data with linear encoding models, we computed the

cross-validated correlations between the encoding models’ predicted time courses and the

observed time-series. In a first set of analyses, this allowed us to quantify the sensitivity to

syntactic and semantic information in each voxel (Fig. 1B). In a second set of analyses, we

identified brain regions integrating information beyond the lexical level. We first compared

the contextual model (GPT-2) and the non contextual model (Glove), before investigating

the brain regions processing short (5 words), medium (15 words) and long (45 words)

contexts, using a non-contextualized GloVe model as a 0-context baseline (See Fig. 1C.).

Methods and Materials

Creation of datasets; Semantic, Syntactic and Integral features

We selected a collection of English novels from Project Gutenberg

(www.gutenberg.org; data retrieved on February 21, 2016). This integral dataset comprised

4.4GB of text for training purposes and 1.1GB for validation. From it, we created two

information-restricted datasets: the semantic dataset and the syntactic dataset. In the

semantic dataset, only content words were kept, while all grammatical, function words and

punctuation signs were filtered out. In the syntactic dataset, each token (word or

punctuation sign) was replaced by an identifier encoding a triplet (POS, Morph, NCN)

where POS is the Part-of-speech computed using Spacy (Honnibal & Montani, 2017),

Morph corresponds to the morphological features obtained from Spacy and NCN stands for

the Number of Closing Nodes in the parse tree, at the current token, computed using the

Berkeley Neural Parser (Kitaev & Klein, 2018) available with Spacy.

In this paper, we refer to the content of the integral dataset as integral features, the

content of the semantic dataset as semantic features, and the content of the syntactic

dataset as syntactic features. Examples of integral, semantic and syntactic features are
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given in Appendix 1-Models training.

GloVe Training

GloVe (Global Vectors for Word Representation) relies on the co-occurence matrix

of words in a given corpus to generate fixed embedding vectors that capture the

distributional properties of the words (Pennington et al., 2014). Using the open-source

code provided by Pennington and al. (https://nlp.stanford.edu/projects/glove/), we

trained GloVe on the three datasets (integral, semantic and syntactic), setting the context

window size to 15 words, the embedding vectors’ size to 768, and the number of training

epochs to 20, until no further improvement on the validation set could be observed;

convergence assessments are provided in Appendix 1-Convergence of the language models

during training (Appendix 1-Fig.D2).

GPT-2 Training

GPT-2 (Generative Pretrained Transformer 2) is a deep learning transformer-based

language model. We trained the open-source implementation GPT2LMHeadModel,

provided by HuggingFace (Wolf, 2020), on the three datasets (integral, semantic and

syntactic).

The GPT2LMHeadModel architecture is trained on a next-token prediction task

using a CrossEntropyLoss and the Pytorch Python package (Paszke et al., 2019). The

training procedure can easily be extended to any feature type by adapting both vocabulary

size and tokenizer to each vocabulary. Indeed, the inputs given to GPT2LMHeadModel are

ids encoding vocabulary items. All the analyses reported in this paper were performed with

4-layer models having 768 units per layer and 12 attention heads. As shown in (Pasquiou

et al., 2022), these 4-layer models fit brain data nearly as well as the usual 12-layer models.

We presented the models with input sequences of 512 tokens, and let the training run for 5

epochs until no further improvement on the validation set could be observed; convergence

assessments are provided in Appendix 1-Convergence of the language models during

training (Appendix 1-Fig.D1).
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For the GTP-2 trained on the semantic features, small modifications had to be

made to the model architecture in order to remove all residual syntax. By default, GPT-2

encodes the absolute positions of tokens in sentences. When training GPT-2 on the

semantic features, as word ordering might contain syntactic information, we had to make

sure that position information could not be leveraged by means of its positional

embeddings, yet keeping information about word proximity as it influences semantics. We

modified the implementation so that the GPT-2 trained on semantic features follows these

specifications (see Appendix 1-Removing absolute position information in GPT-2 trained

on semantic features).

Stimulus: The Little Prince story

The stimulus used to obtain activations from humans and from NLP models was

The Little Prince novella. Humans listened to an audio-book version, spliced into 9 tracks

that lasted approximately 11 minutes each (see Li et al., 2022). In parallel, NLP models

were provided with an exact transcription of this audio-book, enriched with punctuation

signs from the written version of the Little Prince. The text comprised 15,426 words and

4,482 punctuation signs. The acoustic onsets and offsets of the spoken words were marked

to align the audio recording with the The Little Prince text.

Computing Embeddings from the Little Prince text

The tokenized versions of the Little Prince (one for each feature type) were run

through Glove and GPT-2 in order to generate embeddings that could be compared with

fMRI data.

For GloVe, we simply retrieved the fixed embedding vector learnt during training for

each token.

For GPT-2, we retrieved the contextualized third layer hidden-state (aka

embedding) vector for each token, so that the dimension is comparable to the dimension of

GloVe’s embeddings (768 units). Layer 3 (out of 4) was selected because it has been

demonstrated that late middle layers of recurrent language models are best able to predict
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brain activity (Jain & Huth, 2018; Toneva & Wehbe, 2019) (see Appendix 1-Fig.L1).

The embedding built by GPT-2 for a given token rely on the past tokens (aka past

context). The bigger the past context, the more reliable the token embedding will be. We

designed the following procedure to ensure that the embedding of each token used similar

past context size: the input sequence was limited to a maximum of 512 tokens. The text

was scanned with a sliding window of size N = 512 tokens, and a step of 1 token. The

embedding vector of the next to last token (in the sliding window) was then retrieved. For

the context-constrained versions of GPT-2 (denoted GPT-2Context−k), the input text was

formatted as the training data (see Fig.1C) in batches of input sequences of length (k + 5)

tokens (see Appendix 1-Context-limited models for examples), and only the embedding

vector of the current token was retrieved. Embedding matrices were built by concatenating

words embeddings. More precisely, calling d the dimension of the embeddings retrieved

from of a neural model, corresponding to the number of units in one layer in our case, and

w the total number of tokens in the text, we obtained an embedding matrix X ∈ Rw×d

after the presentation of the entire text to the model.

Decoding of syntax and semantics categories from embeddings

We designed two decoding tasks: a syntax decoding task in which we tried to

predict the triplet (Part-of-speech, morphological information and number of closing nodes)

of each word from its embedding vector (355 categories), and a semantic decoding task in

which we tried to predict each content word’s semantic category (from Wordnet,

https://wordnet.princeton.edu/) from its embedding vector (837 categories).

We used Logistic Classifiers and the text of The Little Prince, which was split using

a 9-fold cross-validation on runs, training on 8 runs and evaluating on the remaining one

for each split. Dummy classifiers were fitted and used as estimations of chance-level for

each task and model. It is crucial to acknowledge that the baseline performance level varies

based on both the decoding task and the specific model employed. Specifically, the models

trained on semantic features were exclusively trained on content words. Consequently,
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when assessing the syntactic decoding accuracy of these models, only content words were

considered, resulting in an elevated baseline performance level. Conversely, for the models

trained on syntactic/integral features, the syntactic decoding accuracy encompasses the

evaluation of all tokens. All classifiers implementations were taken from Scikit-Learn

(Pedregosa et al., 2011).

MRI data

We used the functional Magnetic Resonance Imaging (fMRI) data of 51 English

speaking participants who listened to an entire audio-book of The Little Prince during

about one hour and a half. These data, available at

https://openneuro.org/datasets/ds003643/versions/1.0.2 are described in details by Li

et al. (2022). In short, the acquisition used echo-planar imaging (TR=2s;

resolution=3.75x3.75x3.75mm) with a multi-echo (3 echos) sequence to optimize

signal-to-noise (Kundu et al., 2018). Preprocessing comprised multi-echo independent

components analysis (ME-ICA) to denoise data for motion, physiology and scanner

artifacts, correction for slice-timing differences, and nonlinear alignment to the MNI

template brain.

For each participant, there were 9 runs of fMRI acquisition representing about 10

minutes of brain activations each. We re-sampled the preprocessed individual scans at

4x4x4 mm (to reduce computation load) and applied linear detrending and standardization

(mean removal and scaling to unit variance) to each voxel’s time-series.

Finally, we computed a global brain mask to only keep voxels containing useful

signal (using nilearn’s compute_epi_mask function, we find the least dense point of the

total image histogram) across all runs for at least 50% of all participants. This global mask

contained 26,164 voxels at 4x4x4mm resolution. All analyses reported in this paper were

performed within this global mask.
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Correlations between embeddings and individual fMRI data

The embeddings (X) derived from neural language models were mapped to each

subject’s fMRI activations (Ys, s = 1..S) following the pipeline outlined in Fig.1B.

The process, using the standard model-based encoding approach to modelling fMRI

signals (Huth et al., 2016; Naselaris et al., 2011; Pasquiou et al., 2022), is detailed in

Appendix 1-Mapping NLM activations to brain data. In brief, each column of X was first

aligned with the words’ offsets in the audio stream and convolved with the default SPM

haemodynamic kernel (using Nilearn’s compute_regressor function from the

nilearn.glm.first_level module). The resulting time-course was sub-sampled to match the

sampling frequency of the scans Ys (giving X̃). Next, in each individual voxel, the

time-course of brain activation was regressed on X̃ using Ridge regression. The Ridge

regression regularization was estimated using a nested-cross validation scheme (see

Appendix 1-Mapping NLM activations to brain data for more details). Finally, the

cross-validated Pearson correlation R between the encoding model’s prediction and the

fMRI signal for subject s in voxel v was computed. The output of this process is a map of

correlations between the encoding models’ predictions and the observed time series, for a

given participant.

Baseline fMRI model

To obtain a more accurate evaluation of the specific impact of the embeddings on

brain scores, we removed the contribution of three confounding variables from all maps

presented in this paper. The three confounding variables were: a) the acoustic energy (root

mean squared of the audio signal sampled every 10ms) b) the word-rate (one event at each

word offset) c) the log of the unigram lexical frequency of each word (modulator of the word

events). An fMRI Ridge linear model that only included these three regressors was used to

compute a map of cross-validated correlations for each participant.

The R-maps presented in Fig.3 of this paper are corrected for the contribution of

these variables, that is they display ∆R, the increase in R when adding a model to the
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baseline model versus the baseline model by itself.

Appendix 1-Fig.G1 displays the significant correlations in the group-level R maps

associated with the Baseline Model, corrected for multiple comparison using a FDR

correction (p < 0.005).

Group-level Maps

The brain maps presented in this document display group average increase in R

scores obtained from individuals correlation maps (relative to the baseline model or to

another model). Only voxels showing statistically significant increase in R score are shown.

Significance was assessed through one-sample t-tests applied to the spatially

smoothed correlation maps, with an isotropic Gaussian kernel with FWHM of 6mm. In

each voxel, the test assessed whether the distribution of Rtest values across participants was

significantly larger than zero. To control for multiple comparisons, all maps were corrected

using a False Discovery Rate (FDR) correction with p < 0.005 (Benjamini & Hochberg,

1995). On each corrected figure, the FDR threshold on the z-scores, named zF DR, is

indicated at the bottom, that is, values reported on these maps (e.g. R scores) are shown

only for voxels whose z-score survived this threshold (zvoxel > zF DR).

While all analyses were done on volume data, all brain maps were projected onto

brain surface for visualization purposes, using ‘fsaverage5 ’ (from Nilearn’s

datasets.fetch_surf_fsaverage) mesh and the ‘vol_to_surf ’ function (from Nilearn’s

surface module).

Syntax and Semantics peak regions

We decided to also report brain maps’ peak regions, i.e. the 10% of the voxels

having the highest R score in a brain map. The motivation is that two different language

processes might elicit lots of brain regions in common, while the regions that are better

fitted by the representations derived from each process might differ. The peak regions of

the neural correlates of semantic and syntactic representations are displayed on surface

brain maps. The proportions of voxels belonging to each peak region as well as the Jaccard
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score between syntax and semantics are displayed for each model and hemisphere.

Subject-level maps were added in the Appendix to complement our group-level analysis.

Jaccard index

The Jaccard index (computed using scikit-learn jaccard_score function from the

metrics module) for two sets X and Y is defined in the following manner:

J(X, Y ) = |X ∩ Y |/|X ∪ Y |. It behaves as a similarity coefficient: when the two sets

completely overlap, J=1; when their intersection is nil, J=0.

Specificity index

To quantify how much each voxel v is influenced by semantic and syntactic

embeddings, we defined a specificity index in the following manner:

xspecificity(v) = log10

(
rSemantic(v)
rSyntax(v)

)

rSyntax is the R score increase relative to the baseline model for the syntactic

embeddings. rSemantic is the R score increase relative to the baseline model for the semantic

embeddings.

In Fig.4, the higher x is, the more sensitive it is to semantic embeddings compared

to syntactic embeddings. The lower x is, the more sensitive it is to syntactic embeddings

compared to semantic embeddings. x close to 0, indicates an equal sensitivity to syntactic

and semantic embeddings.

Group average specificity index maps were computed from each subject’s map and

significance was assessed through one-sample t-tests applied to the spatially smoothed

specificity maps, with an isotropic Gaussian kernel with FWHM of 6mm. A FDR

correction (p < 0.005) was used to correct for multiple comparisons.
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Results

Dissociation of syntactic and semantic information in embeddings

We first assessed the amount of syntactic and semantic information contained in the

embedding vectors derived from GloVe and GPT-2 trained on the different sets of features.

In order to do so, we trained logistic classifiers to decode either the semantic category or

the syntactic category from the embeddings generated from the text of The Little Prince.

The decoding performances of the logistic classifiers are displayed in Fig.2. The

models trained directly on the integral features, that is, the intact texts, have relatively

high performance on the two tasks (75% in average for both GloVe and GPT-2). The

models trained on the syntactic features performed well on the syntax decoding task

(decoding accuracy >95%), but are near chance-level on the semantic decoding task

(decoding accuracy around 25% with a chance-level at 16%). Similarly, the models trained

on the semantic features display good performance on the semantic decoding task

(decoding accuracy greater than 80%), but a relatively poorer decoding accuracy on the

syntax decoding task (45%, chance level: 16%). These results validate the experimental

manipulation by showing that syntactic embeddings essentially encode syntactic

information and semantic embeddings essentially encode semantic information. The high

decoding accuracy of GloVe models is to be expected as we are decoding fixed categories

associated with each word. Most of the information contained in the syntactic label

(POS+Morph) and the semantic label is independent of the context, thus, GloVe performs

well because it ignores contextual information. On the other hand, GPT-2 may be slightly

affected by contextual cues. Despite this, the decoding task remains useful in

demonstrating the presence of specific information within a model’s embeddings.

In the Appendix, we present the decoding accuracy of the models when

independently decoding the Part-of-speech (POS), syntactic morphological features

(Morph), and the Number of Closing Nodes (NCN). These findings reveal that models

trained on semantic features perform at chance-level when predicting the NCN, while
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surpassing chance-level accuracy when predicting the Morph and POS. This improved

performance in Morph prediction can be attributed to the retention of certain features such

as gender, plural, or tense, which were preserved to maintain semantic integrity. POS is

well decoded because of the small number of POS labels compared to the vocabulary size

(number of content words).

Correlations of fMRI data with syntactic and semantic embeddings

Our objective was to evaluate how well the embeddings computed from GloVe and

GPT-2 on the syntactic and semantic features fit the fMRI signal in various parts of the

brain. For each model/features combination, we computed the increase in R score when

the resulting embeddings were appended to a baseline model that comprised low-level

variables (acoustic energy, word onsets and lexical frequency). This was done separately for

each voxel. The resulting maps are displayed in Fig.3A.

The maps reveal that semantic and syntactic feature-derived embeddings from

GloVe or GPT-2 significantly explain the signal in a set of bilateral brain regions including

frontal and temporal regions, as well as the Temporo-parietal junction, the Precuneus and

Dorso-Medial Prefrontal Cortex (dMPC). The classical left-lateralized language network,

which includes the Inferior Frontal Gyrus (IFG) and the Superior Temporal Sulcus (STS),

is entirely covered. Overall, a vast network of regions is modulated by both semantic and

syntactic information.

Nevertheless, detailed inspection of the maps shows different R score distribution

profiles (see Appendix 1-R Scores Distribution for GloVe and GPT-2 Trained on Semantic

or Syntactic Features Appendix 1-Fig.I1). For example, syntactic embeddings yield the

highest fits in the Superior Temporal Lobe, extending from the Temporal Pole (TP) to the

Temporo-Parietal Junction (TPJ), as well as the Inferior Frontal Gyrus (IFG, BA-44 and

47), the Superior Frontal Gyrus (SFG), the Dorso-Medial Prefrontal Cortex (dMPC) and

the posterior Cingulate cortext (pCC). Semantic embeddings, on the other hand, show

peaks in the posterior Middle Temporal Gyrus (pMTG), the Angular Gyrus (AG), the
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Inferior Frontal Sulcus (IFS), the dMPC and the Precuneus/pCC.

Regions best fitted by semantic or syntactic embeddings

As noticed above, despite the fact that the regions fitted by semantic and syntactic

embeddings essentially overlap (Fig.3A), the areas where each model has the highest R

scores differ. To better visualize the maxima from these maps, we selected, for each of

them, the 10% of voxels having the highest R scores. Thresholding at the 90-th percentile

of the distributions (threshold values displayed in Appendix 1-Fig.I1) produces the maps

presented in Fig.3B.

A first observation is that the number of supra-threshold voxels is quite similar in

the left (19%) and right (21%) hemispheres, whether GPT-2 or Glove is considered,

showing that during the processing of natural speech, both syntactic and semantic features

modulate activations in both hemispheres to a similar extent. The regions involved include,

bilaterally, the TP, the STS, the IFG and IFS, the DMPC, the pMTG, the TPJ, the

Precuneus and pCC.

One noticeable difference between the two hemispheres, apparent in Fig.3B,

concerns the overlap between the semantic and syntactic peak regions: it is stronger in the

right than in the left hemisphere. To assess this overlap, we computed the Jaccard indices

(see Jaccard index) between voxels modulated by syntax and voxels modulated by

semantics. The Jaccard indices were much larger in the right hemisphere (Jright
GloV e = 0.52

and Jright
GP T −2 = 0.60) than in the left (J left

GloV e = 0.14 and J left
GP T −2 = 0.20).

The left hemisphere displayed distinct peak regions for semantics and syntax; syntax

involving the STS, the pSTG, the anterior TP, the IFG (BA-44/45/47) and the MFG, while

semantics involves the pMTG, AG, the TPJ and the IFS. We only observe overlap in the

upper IFG (BA-44), AG and posterior STS. On medial faces, semantics and syntax share

peak regions in the Precuneus, the pCC and the DMPC. In the right hemisphere, syntax

and semantics share the STS, pMTG and most frontal regions, with only syntax-specific

peak regions in the TP and SFG and semantics-specific peak regions in the TPJ.
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In addition to the group-level analysis, we conducted subject-level analyses that

yielded consistent findings (see Appendix 1-Fig.K,K2,K3). Our results demonstrate the

following patterns:

• We observed higher Jaccard scores in the right hemisphere compared to the left.

• Syntactic peak regions were identified in the Temporal regions, the IFG (Inferior

Frontal Gyrus), and dmPFC (dorsomedial Prefrontal Cortex).

• Semantic peak regions were found near the IFS (Inferior Frontal Sulcus)/pMTG

(posterior Middle Temporal Gyrus)/TPJ (TemporoParietal Junction).

These subject-level analyses further support and reinforce the patterns observed at the

group level.

Overall, this shows that the neural correlates of syntactic and semantic features

appear more separable in the left than in the right hemisphere .

Gradient of sensitivity to syntax or semantics

The analyses presented above revealed a large distributed network of brain regions

sensitive to both syntax and semantics but with varying local sensitivity to both conditions.

We further investigated these differences by defining a specificity index that reflects,

for each voxel, the logarithm of the ratio between the R scores derived from the semantic

and the syntactic embeddings (see Specificity index). A score of x indicates that the voxel

is 10x-times more sensitive to semantics compare to syntax if x > 0 (green), and conversely,

the voxel is 10x-times more sensitive to syntax compare to semantics if x < 0 (red). Voxels

with specificity indexes close to 0, are colored in yellow and show equal sensitivity to both

conditions. Specificity indexes are plotted on surface maps in Fig.4. The top row shows the

specificity index of voxels where there was a significant effect for syntactic or for semantic

embeddings in Fig.3A, while the bottom row shows group specificity indexes corrected for

multiple comparison using an FDR-correction of 0.005 (N=51).

The top row of Fig.4 shows that voxels that are more sensitive to Syntax include,

bilaterally, the anterior Temporal Lobes (aTL), the STG, the Supplementary Motor Area
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(SMA), the MFG and sub-parts of the IFG. Voxels more sensitive to Semantics are located

in the pMTG, the TPJ/AG, the IFS, SFS and the Precuneus. Voxels sensitive to both

types of features are located in the posterior STG, the STS, the dMPC, the CC, the MFG

and in the IFG.

More specifically, in Fig.4 bottom, one can observe significantly low ratios (in favor

of the syntactic embeddings) in the STG, aTL and pre-SMA, and significantly large ratios

(in favor of the semantic embeddings) in the pMTG, the AG and the IFS. Specificity index

maps are consistent with the maps of R score differences between semantic and syntactic

embeddings for Glove and GPT-2 (see Appendix 1-Fig.J1), but provide more insights into

the relative sensitivity to syntax and semantics. These maps highlight that some brain

regions show stronger responses to the semantic or to the syntactic condition even when

they show sensitivity to both.

Unique contributions of syntax and semantics

The previous analyses allowed us to quantify the amounts of brain signal explained

by the information encoded in various embeddings. Yet, when two embeddings explain the

same amount of signal, that is, have similar R score, it remains to be clarified whether they

hinge on information represented redundantly in the embeddings or information specific to

each embedding. To address this issue, we analyzed the additional information brought by

each embedding on top of the other one. To this end, we evaluated correlations that are

uniquely explained by the semantic embeddings compared to the syntactic embeddings,

and conversely.

To quantify the unique contribution of each feature space to the prediction of the

fMRI signal, we first estimated the Pearson correlation explained by the embeddings

learned from the individual feature space - e.g., using only syntactic embeddings or

semantic embeddings. We then assessed the correlation explained by the concatenation of

embeddings derived from different feature spaces - e.g., concatenating syntactic and

semantic embedding vectors (de Heer et al., 2017).
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Because it can identify single voxels whose responses can be partly explained by

different feature spaces, this approach provides more information than simple subtractive

analyses that estimate the R score difference per voxel (see Appendix 1-Fig.J1).

Syntactic embeddings (Fig.5A) uniquely explained brain data in localized brain

regions: the STG, the TP, the pre-SMA and in the IFG, with R scores increases of about

5%.

Semantic embeddings (Fig.5B) uniquely explained signal bilaterally in the same

wide network of brain regions as the one highlighted in Fig.3A, including frontal and

temporo-parietal regions bilaterally as well as the Precuneus and pCC medially, with

similar R scores increases around 5%.

This suggests that even if most of the brain is sensitive to both syntactic and

semantic conditions, syntax is preferentially processed in more localized regions than

semantics which is widely distributed.

Synergy between syntax and semantics

To probe regions where the joint effect of syntax and semantics is greater than the

sum of the contributions of these features, we compared the R scores of the embeddings

derived from the integral features with the R scores of the encoding models concatenating

the semantic and syntactic embeddings (see Fig.5C).

For the embeddings obtained with GloVe, this analysis did not reveal any significant

effect. For the embeddings obtained with GPT-2, significant effects were observed in most

of the brain, but with higher effects in the semantic peak regions: pMTG, TPJ, AG and in

frontal regions.

Integration of contextual information

To further examine the effect of context, we compared GPT-2, the supra-lexical

model which takes context into account, to GloVe, a purely lexical model. The differences

in R scores between the two models, trained on each of the three datasets are presented in

Fig.6.
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GPT-2 embeddings elicit stronger R scores than GloVe. The difference spreads over

wider regions when the models were trained on syntax compared to semantics (see Fig.6

top left and right). The comparison for syntax led to significant differences bilaterally in

the STS/STG, from the Temporal Pole to the TPJ, in superior, middle and inferior frontal

regions, and medially in the pCC and dMPC. For semantics, the comparison only led to

significant differences in the Precuneus, the right STS and posterior STG. Fig.6 (bottom

left) shows the comparison between GPT-2 and GloVe when trained on the Integral

features. Given that both semantic and syntactic contextual information were available to

GPT-2, these maps reflect the regions that benefit from context during story listening.

To show that context has an effect is one thing, but different brain regions are likely

to have different integration window’s size. To address this question, we developed a

fixed-context window training protocol to control for the amount of contextual information

used by GPT-2 (Fig.1C). We trained models with short (5 tokens), medium (15 tokens)

and long (45 tokens) range windows sizes. This ensures that GPT-2 was not sampling out

of the learnt distribution at inference, and not using more context than what was available

in the context window.

Comparing GPT-2 with 5 tokens to GloVe (0-size context) highlighted a large

network of frontal and temporo-parietal regions. Medially, it included the Precuneus, the

pCC and the DMPC (Fig.6, short). Short context-sensitivity showed peak effects in the

Supramarginal gyri, the pMTG and medially in the Precuneus and pCC. Counting the

number of voxels showing significant short-context effects highlighted an asymmetry

between the left and right hemisphere with 1.6 times more significant voxels in the left

hemisphere compared to the right. Contrasting a GPT-2 model using 15 tokens of context

(the average size of a sentence in The Little Prince) versus a GPT-2 model using only 5

tokens, yielded localized significant differences in the SFG/SFS, the TP, MFG and STG

near Heschl’s gyri and medially in the Precuneus and pCC (Fig.6, Medium). The biggest

medium context effects included the left MFG, the right SFG and DMPC and bilaterally
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the Precuneus and pCC. Finally, contrasting models using respectively 45 and 15 tokens of

context revealed 2.8 times as many significant differences in the right hemisphere as in the

left. Significant effects were the highest bilaterally and medially in the pCC, followed, in

the right hemisphere, by the Precuneus, the DMPC, MFG, SFG, STS and TP (see Fig.6,

bottom).

Taken together, our results show 1) that syntax dominantly determines the

integration of contextual information, 2) that a bilateral network of frontal and

temporo-parietal regions is modulated by short context, 3) that short-range context

integration is preferentially located in the left hemisphere, 4) that the right hemisphere is

involved in the processing of longer context sizes, and finally 5) that medial regions

(Precuneus and pCC) are core regions of context integration, showing context effects at all

scales.

Discussion

Language comprehension in humans is a complex process, which involves several

interacting sub-components (word recognition, processing of syntactic and semantic

information to construct sentence meaning, pragmatic and discourse inference, ...)

(Jackendoff, 2002, e.g.). Discovering how the brain implements these processes is one of the

major goals of neurolinguistics. A lot of attention has been devoted, in particular, to the

syntactic and semantic components (Binder & Desai, 2011; Friederici, 2017, for reviews)

and the extent to which they are implemented in (practically) distinct or identical regions

is still debated (e.g. Fedorenko et al., 2020).

It must be noted that a fair proportion of these studies relied on controlled

experimental paradigms with single words or sentences, based on the manipulation of

complexity or violations of expectations. To study language processing in a more natural

way, several recent studies have presented naturalistic texts to participants, and have

analyzed their brain activations using Artificial Neural Language Models (e.g. Huth et al.,

2016; Pasquiou et al., 2022; Pereira et al., 2018a; Schrimpf et al., 2020). These models are
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known to encode some aspects of semantics and syntax (e.g. Hewitt & Manning, 2019;

Lakretz et al., 2019; Pennington et al., 2014). In the current work, to further dissect brain

activations into separate linguistic processes, we trained NLP models on a corpus from

which we selectively removed syntactic, semantic or contextual information and examined

how well these information-restricted models could explain fMRI signal recorded from

participants who had listened to an audiobook. The rationale was to highlight brain regions

representing syntactic and semantic information, at the lexical and supralexical levels

(comparing a lexical model GloVe, and a contextual one, GPT-2). Additionaly, by varying

the amount of context provided to the supralexical model, we sought to identify the brain

regions sensitive to different context sizes (see Jain and Huth (2018) for a similar analysis).

Whether models were trained on syntactic features or on semantic features, they fit

fMRI activations in a wide bilateral network which goes beyond the classic language

network comprising the IFG and temporal regions: it also includes most of the dorso

lateral and medial prefrontal cortex, the inferior parietal cortex, and on the internal face,

the precuneus and posterior cingulate cortex (see Fig.3). Nevertheless, the regions best

predicted by syntactic features on the one hand, and semantic features on the other hand,

are not exactly the same. While they overlap quite a lot in the right hemisphere, they are

more dissociated in the left hemisphere Fig.3, panel B and Appendix 1-Fig.K1). In

addition, the relative sensitivity to syntax and semantics varies from region to region, with

syntax predominating in the temporal lobe (see Fig.4). Elimination of shared variance

between syntactic and semantic features confirmed that pure syntactic effects are restricted

to STG/STS, bilaterally, IFG, and pre-SMA, while pure semantic effects occur throughout

the network (Fig.5 A-B).

The comparison between the supralexical model (GPT-2) and the lexical one

(GloVe), revealed brain regions involved in compositionality (Fig.6) and a synergy between

syntax and semantics that arises only at the supralexical level (Fig.5C). Finally, analyses of

the influence of the size of context provided to GPT-2 when computing word embeddings,
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show that (1) a bilateral network of fronto-temporo-parietal regions is sensitive to short

context, that (2) there is a dissociation between the left and right hemispheres, respectively

associated with short-range and long-range context integration, and finally that (3) the

medial Precuneus and posterior Cingulate gyri show the highest effects at every scale,

hinting at an important role in large context integration (Fig.7).

In summary, this study shows that

• there is a difference between the right and left hemispheres with respect to the

separation of syntactic and semantic processing. We found more segregation in the

left compared to the right hemisphere. This provides support to classic theories on

the functional difference between the left and right hemispheres (Beeman &

Chiarello, 2013).

• the right hemisphere is sensitive to longer contexts than the left one (Beeman &

Chiarello, 2013)

• neural language models are a beneficial tool in the study of brain function.

Manipulating the training corpus or the size of the context window, possible only in

simulations, was shown to lead to new findings about language processing in the

human brain.

Models trained on semantic and syntactic features fit brain activity in a widely

distributed network, but with varying relative degrees.

When trained on the integral corpus, that is on the integral features, both the

lexical (GloVe) and contextual (GPT-2) models captured brain activity in a large extended

language network (Appendix 1-Fig.H1). This large extended language network goes beyond

the core language network, that is, the left IFG and temporal regions, encompassing

homologous areas in the right hemisphere, the dorsal prefrontal regions, both on the lateral

and medial surfaces, as well as in the inferior parietal, Precuneus and posterior Cingulate.

The result is consistent with the ones from previous studies that have looked at brain

responses to naturalistic text, whether analysed with NLP models (e.g. Caucheteux et al.,
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2021; Huth et al., 2016; Jain & Huth, 2018; Pereira et al., 2018b) or not (Chang et al.,

2022; Lerner et al., 2011).

The Precuneus/pCC, inferior parietal and dorsomedial prefrontal cortex are part of

the Default Mode Network (DMN) (Raichle, 2015). The same areas are actually also

relevant in language and high-level cognition. For example, early studies examining the

role of coherence during text comprehension had pointed out the same regions (Ferstl &

von Cramon, 2001; Xu et al., 2005): coherent discourses elicit stronger activations than

incoherent ones. Recent work by (Chang et al., 2022) has revealed that the DMN is the

last stage in a temporal hierarchy of processing naturalistic text, integrating information

on the scale of paragraphs and narrative events, see also (Baldassano et al., 2017; Simony

et al., 2016). These regions are not language-specific though, as they have been shown to

be activated during various theory of mind tasks, relying on language or not, and have thus

also been dubbed the “Mentalizing network” (Baetens et al., 2014; Mar, 2011).

Models trained on the information-restricted semantic and syntactic features fit

signal in this widely distributed network (Fig.3A). This is in agreement with Caucheteux

et al. (2021) and Fedorenko et al. (2020) who, using very different approaches, found that

syntactic predictors modulated activity throughout the language network. Caucheteux

et al. (2021) first constructed new texts that matched, as well as possible, the text

presented to participants in terms of their syntactic properties. The lexical items being

different, the semantics of the new texts bear little relation with the original text. Then,

using a pre-trained version of GPT-2, the authors obtained embeddings from these new

texts and averaged them to create syntactic predictors. They found that these syntactic

embeddings fitted a network of regions (ibid. Fig5D) similar to the one we observed

(Fig.3A). Further, defining the effect of semantics as the difference between the scores

obtained from the embeddings from the original text, and the scores from the syntactic

embeddings, Caucheteux et al. (2021) observed that semantics had a significant effect

throughout the same network (ibid. Fig5G).
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Should one conclude that syntax and semantics equally modulate the entire

language network? Our results reveal a more complex picture. Figure 4 presents a

semantics vs syntax specificity index map, showing higher sensitivity to syntax in the STG

and anterior temporal lobe, whereas the parietal regions are more sensitive to semantics,

consistent with Binder et al. (2009).

Our study helps to reconcile two apparently contradicting results in the literature.

On the one hand, classic results on syntactic processing found a localized set of brain

regions involved in syntactic processing (Friederici, 2016; Matchin et al., 2017; Pallier

et al., 2011), whereas recent studies, using naturalistic (so-called ’ecological’) paradigms,

found a more widely spread, distributed, network of brain regions involved in syntactic

processing (Caucheteux et al., 2021; Fedorenko et al., 2020). Our study reconciles these

two apparently contradicting results by providing a more graded view of syntactic

processing in the brain, showing that sensitivity to syntactic processing peaks at around

the same set of localized brain regions identified in classic studies.

Another point to take in consideration is that syntactic and semantic features are

not perfectly orthogonal. Indeed, the logistic decoder trained on the embeddings from the

semantic dataset was better than chance at recovering both syntactic Morphological

features and the Part-of-Speech (Fig.2 and Appendix 1-Fig.E1). This might be due, for

example, to the fact that some features like gender or number are present in both datasets,

explicitly in the syntactic dataset and implicitly in the semantic dataset. Part-of-speech

can be easily decoded from semantic features because the number of POS labels is much

smaller than the vocabulary size of the semantic features. To focus on the unique

contributions of syntax and semantic, we remove the shared variance from the syntactic

and semantic models using model comparisons (Fig.5).
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“Pure” semantic but not “pure” syntactic features modulate activity in a wide

set of brain regions.

The unique effect of semantics, when its shared component with syntax was

removed, remains widespread (Fig.5B). This is consistent with the notion that semantic

information is widely distributed over the cortex, an idea popularized by embodiment

theories (Hauk et al., 2004; Pulvermüller, 2013), but which was already supported by the

neuropsychological observations revealing domain-specific semantic deficits in patients

(Damasio et al., 2004).

On the other hand the “pure” effect of syntax “shrinked” to the STG and aTL

(bilaterally), the IFG (on the left) and the pre-SMA (Fig.5A). The left IFG and STG/STS

have previously been implicated in syntactic processing Friederici (2011) and Friederici

(2017, e.g.), and this is confirmed by the new approach employed here. Note that we are

not claiming that these regions are specialized for syntactic processing only. Indeed they

also appear to be sensitive to the “pure” semantic component (Fig.5B).

The contributions of the right hemisphere.

A striking feature of our results is the strong involvement of the right hemisphere.

The notion that the right hemisphere has some linguistic abilities is supported by the

studies on split-brains (Sperry, 1961) and by the patterns of recovery of aphasic patients

after lesions in the left hemisphere (Dronkers et al., 2017). Moreover, a number of brain

imaging studies have confirmed the right hemisphere involvement in higher-level language

tasks, such as comprehending metaphors or jokes, generating the best endings to sentences,

mentally repairing grammatical errors, detecting story inconsistencies (see Beeman and

Chiarello (2013) and Jung-Beeman (2005)). All in all, this suggests that the right

hemisphere is apt at recognizing distant relations between words. This conclusion is further

reinforced by our observation of long-range (paragraph-level) context effects in the right

hemisphere (Fig.7, Long).

The effects we observed in the right hemisphere are not simply the mirror image of
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the left hemisphere. Spatially, syntax and semantics dissociate more in the left than the

right. An observation that is consistent both at subject-level (see Appendix 1-Fig.K1) and

group-level (see Fig.3, Panel B). Moreover, the regions of overlap correspond to the regions

integrating long context (Fig.7C, bottom row), suggesting that the left hemisphere is

relatively more involved in the processing of local semantic or syntactic information,

whereas the right hemisphere integrates both information at a larger time-scale (supra

sentential).

Syntax drives the integration of contextual information.

The comparison between the predictions of the integral model trained on the intact

texts, and the predictions of the combined syntactic and semantic embeddings from the

information-restricted models (Fig.5C), highlights a striking contrast between GloVe and

GPT2. While the former, a purely lexical model, does not benefit from being trained on

the integral text, GPT-2 shows clear synergetic effects of syntactic and semantic

information. GPT-2’s embeddings fit brain activation better when syntactic and semantic

information can contribute together. The fact that the regions that benefit most from this

synergetic effect are high-level integrative regions, at the end of the temporal processing

hierarchy described by Chang et al. (2022), suggests that the availability of syntactic

information drives the semantic interpretation at the sentence level.

These regions are quite similar to the semantic peak regions highlighted in Fig. 3B,

and overlap with the regions showing context effects (Fig.7). This replicates, and extends,

the results from Jain and Huth (2018) who, varying the amount of context fed to LSTM

models, from 0 to 19 words, found shorter context effects in temporal regions (ibid. Fig 4).

It is crucial to clarify that the influence of syntactic information on semantic

interpretation at the sentence level does not imply that syntactic information drives the

alignment performance between artificial and biological neural networks. By examining the

sensitivity index maps and comparing models trained on semantic features with those

trained on syntactic features (see Appendix 1-Fig.J1), it becomes apparent that models
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trained on semantic features account for a larger proportion of variance in most areas of

the brain. The finding that semantic information accounts for a greater proportion of

variance than syntactic information aligns with previous studies in the literature (Kauf

et al., 2023; Mollica et al., 2019; Sinha et al., 2021).

Limitations of our study

Two limitations of our study must be acknowledged.

The dissociation between syntax and semantics is not perfect. The way we created

the semantic dataset by removing function words clearly impacts supra-lexical semantics.

For example, removing instances of and and or prevents the NLP model from

distinguishing between the meaning of “A or B” and “A and B”. In other words, the logical

form of sentences can be perturbed. The decline in compositional semantics becomes

apparent when examining the layer-wise encoding performance of the semantic model (see

Appendix 1-Fig.L1). In contrast to the models trained on integral or syntactic features,

which exhibit optimal encoding performance in the later layers, the semantic model

demonstrates a decrease in performance. This observation indicates that the model

struggles to effectively utilize the structural information necessary for composing the

meanings of more extensive linguistic structures.

This may partly explain the synergetic effect of syntax and semantics described

above. Removing pronouns is also problematic as this removed the arguments of some

verbs. Ideally, one would like to find transformations of the sentences that keep the

semantic information associated to the function words like conjunctions or pronouns, but it

is not clear how to do that.

A second limitation concerns potential confounding effects of prosody. One cannot

exclude that the embeddings of the models captured some prosodic variables correlated

with syntax (Bennett & Elfner, 2019). For example, certain categories of words (e.g.

determiners or pronouns) are shorter and less accented than others. Also, although the

models are purely trained on written text, they acquire the capacity to predict the end of
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sentences, which are more likely to be followed by pauses in the acoustic signal. We

included acoustic energy and the words’ offsets in the baseline models to try and diminish

the impact of such factors, but such controls cannot be perfect. One way to address this

issue would be to have participants read the text, presented at a fixed presentation rate.

This would effectively remove all low-level effects of prosody.

Conclusion

State-of-the-art Natural Language Processing models, like transformers, trained

with large enough corpora, can generate essentially flawless grammatical text, showing that

they can acquire the grammar of the language. Using them to fit brain data has become a

common endeavour, even if their architecture rules them out of plausible models of the

brain. Yet, despite their low biological plausibility, their ability to build rich distributed

representations can be exploited to study language processing in the brain. In this paper,

we have demonstrated that restricting information provided to the model during training

can be used to show which brain areas encode this information. Information-restricted

models are powerful and flexible tools to probe the brain as they can be used to investigate

whatever representational space chosen, such as semantics, syntax or context. Moreover,

once they are trained, these models can be used directly on any dataset in order to

generate information-restricted features for model-brain alignment. This approach is highly

beneficial, both in term of richness of the features, and scalability, compared to classical

approaches that use manually crafted features or focus on specific contrasts. In future

experiments, more fine grained control of both the information given to the models as well

as model’s representations will permit more precise characterisation of the role of the

various regions involved in language comprehension.

Data Availability

The Integral Dataset (train, test and dev) is available at: https://osf.io/jzcvu/. The

semantic and syntactic datasets can be derived from the Integral Dataset using the scripts

provided in https://github.com/AlexandrePsq/Information-Restricted-NLMs.
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All analyses, as well as model training, features extraction and the fitting of

encoding models were performed using Python 3.7.6 and can be replicated using the code

provided in the same Github repository

(https://github.com/AlexandrePsq/Information-Restricted-NLMs). The required packages

are listed there. A non-exhaustive list includes numpy (Harris et al., 2020), scipy (Virtanen

et al., 2020), scikit-learn (Pedregosa et al., 2011), matplotlib (Hunter, 2007), pandas

(McKinney et al., 2010) and nilearn (https://nilearn.github.io/stable/index.html).

The fMRI dataset is publicly available at

https://openneuro.org/datasets/ds003643/versions/1.0.2, and all details regarding the

dataset are described in details by Li et al. (2022).
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Figure 1
Experimental setup A) A corpus of novels was used to create a dataset from which we
extracted three different sets of features: (i) Integral features, comprising all tokens
(words+punctuation); (ii) Semantic features, comprising only the content words; (iii)
Syntactic features, comprising syntactic characteristics (Part-of-speech, Morphological
syntactic characteristics, Number of Closing Nodes) of all tokens. GloVe and GPT-2
models were trained on each feature space. B) fMRI scans of human participants listening
to an audio-book were obtained. The associated text transcription was input to Neural
models, yielding embeddings that were convolved with an haemodyamic kernel and fitted to
brain activity using a Ridge-regression. Brain maps of cross-validated correlation between
encoding models’ predictions and fMRI time-series were computed. C) To study sensitivity
to context, a GPT-2 model was trained and tested on input sequences of bounded context
length (5, 15 and 45). The resulting representations were then used to predict fMRI activity.
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Figure 2
Decoding syntactic and semantic information from words embeddings. For
each dataset and model type (Glove and GPT-2), logistic classifiers were set up to decode
either the syntactic or the semantic categories of the words from the text of The Little
Prince. Chance-level was assessed using dummy classifiers and is indicated by black vertical
lines.
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Figure 3
Comparison of the ability of GloVe and GPT-2 to fit brain data when trained
on either the semantic or the syntactic features. A) Significant increase in R
scores relative to the baseline model for GloVe (a non contextual model) and GPT-2 (a
contextual model), trained either on the Syntactic features or on the Semantic features
(voxel-wise thresholded group analyses; N=51 subjects; corrected for multiple comparisons
with a FDR approach p < 0.005; for each figure zF DR indicates the significance threshold on
the Z-scores). B) Bilateral spatial organisation of syntax and semantics highest R scores.
Voxels whose R score belong in the 10% highest R scores (in green for models trained on
the semantic features, and in red for models trained on the syntactic features) are projected
onto brain surface maps for GloVe and GPT-2 (overlap in yellow and other voxels in grey).
Jaccard score for each hemisphere are computed, i.e. the ratio between the size of the
intersection and the size of the union of semantics and syntax peak regions; the proportion
of voxels of each category are displayed for each hemisphere and model.
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Figure 4
Voxels’ sensitivity to syntactic and semantic embeddings. Voxels’ specificity
indexes are projected onto brain surface maps reflecting how much semantic information
helps to better fit the time-courses of a voxel compared to syntactic information; the greener
the more the voxel is categorized as a semantic voxel, the redder the more the voxel is
categorized as a syntactic voxel. Yellow regions are brain areas where semantic and
syntactic information lead to similar R score increases. The top row displays specificity
indexes in voxels where there was a significant effect for semantic or syntactic embeddings
in Fig.3A. The bottom row is the voxel-wise thresholded group analyses; N=51 subjects;
corrected for multiple comparisons with FDR < 0.005 (for each figure zF DR indicates the
significance threshold on the Z-scores).
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Figure 5
Correlation uniquely explained by each embeddings A) Increase in R scores
relative to the semantic embeddings when concatenating semantic and syntactic embeddings
in the encoding model. B) Increase in R scores relative to the syntactic embeddings when
concatenating semantic and syntactic embeddings in the encoding model. C) Increase in R
scores relative to the concatenated semantic and syntactic embeddings for the integral
embeddings. These maps are voxel-wise thresholded group analyses; N=51 subjects;
corrected for multiple comparisons with a FDR approach p < 0.005; for each figure zF DR

indicates the significance threshold on the Z-scores.
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Figure 6
Comparison of lexical and supra-lexical processing levels. Brain regions that are
significantly better predicted by GPT-2 (in red) compared to Glove, when trained on
syntactic features (top left), semantic features (top right) and integral features (bottom
left). Maps are voxel-wise thresholded group analyses; N=51 subjects; corrected for multiple
comparisons with a FDR approach p < 0.005; for each figure zF DR indicates the significance
threshold on the Z-scores.
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Figure 7
Integration of context at different levels of language processing. A) Per
hemisphere histograms of significant context effects after group analyses (N=51 subjects);
thresholded at p<0.005 voxel-wise, corrected for multiple comparisons with the FDR
approach. B) Uncorrected group averaged surface brain maps representing R scores
increases when fitting brain data with models leveraging increasing sizes of contextual
information. C) Corrected group averaged surface brain maps representing R scores
increases when fitting brain data with models leveraging increasing sizes of contextual
information; thresholded at p<0.005 voxel-wise, corrected for multiple comparisons with the
FDR approach (for each figure zF DR indicates the significance threshold on the Z-scores).
(top row) Comparison of the model trained with 5 tokens of context (GPT-2Context−5) with
the non-contextualized GloVe. (middle row) Comparison of the models respectively
trained with 15 (GPT-2Context−15) and 5 (GPT-2Context−5) tokens of context. (bottom
row) Comparison of the models respectively trained with 45 (GPT-2Context−45) and 15
(GPT-2Context−15) tokens of context.
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Appendix A

Models training

We trained GloVe and GPT-2 on syntactic or semantic features by adapting both

vocabulary size and the associated tokenizer. Table A1 recapitulates information about the

training of the models used. Table A2 provides examples of the features extracted from a

short passage. After feature extraction, a vocabulary listing all possible feature instances is

created for each feature type. A unique id is then associated to each element of the

vocabulary. The tokenizer converts each feature to its unique id. Finally, the model is fed

sequences of ids and learns to perform its task.

Table A1

Models hyperparameters

Models Number Number of Context Vector Number Number

Models of tokens unique words window size of epochs of layers

GloVe Syntax 980 M 1190 15 768 20 NaN

GPT-2 Syntax 980 M 1190 512 768 5 4

GloVe Semantics 370 M 91880 15 768 20 NaN

GPT-2 Semantics 370 M 91880 512 768 5 4

GloVe Integral 980 M 92945 15 768 20 NaN

GPT-2 Integral 980 M 92945 512 768 5 4
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Table A2

Examples of input sequences given to the neural language models when trained on the

different feature spaces.

Input sequence

Integral
The sixth planet was ten times larger

Features

Syntactic
Part-of-Speech DET ADJ NOUN VERB NOUN NOUN ADJ

Morphology
Definite=Def| Degree Number Ind|Sing|Past| Number Number Degree

Features

PronType=Art =Pos =Sing Person=3|Fin =Card =Plur =Cmp

Number of
1 1 2 1 1 2 2

Closing Nodes

Semantic Content
– sixth planet – ten times larger

Features words

The Morphology field contains a list of morphological features, with vertical bar (|)

as list separator and with underscore to represent the empty list. All features represent

attribute-value pairs, with an equals sign (=) separating the attribute from the value. In

addition, features are selected from the universal feature inventory

(https://universaldependencies.org/u/feat/index.html) and are sorted alphabetically by

attribute names. It is possible that a feature has two or more values for a given word:

Case=Acc,Dat. In this case, the values are sorted alphabetically.

Note: for display purposes, the morphology attribute values were removed for ‘was’,

it was originally equal to ‘Mood=Ind|Number=Sing|Person=3|Tense=Past|VerbForm=Fin’.
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Appendix B

Context-limited models

Using the same original collection of English novels from Project Gutenberg, we trained

three GPT-2 models to probe context integration. More precisely, we restricted the

preceding context (size k = 5, 15 or 45 tokens) given to the GPT-2 models during training

on the "Integral dataset".

When training GPT-2 with a limited amount of contextual information, each input

sequence contained k + 5 tokens: a special token at the beginning, k context tokens, the

current token for which we retrieve the activations in order to fit fMRI brain data, the

token that is predicted by the current token and the 2 special tokens at the end (the last

special end-of-sentence token is always preceded by a token encoding a blank space, we

omitted it in the following table).

Table B1

Examples of context-limited input sequences given to GPT-2 for the analyses on

context-integration. Here the context size k is equal to 5.

Special Context Current Predicted Special
token (size = 5 tokens) token token token

|<endoftext>| Once , when I was six years |<endoftext>|

|<endoftext>| , when I was six years old |<endoftext>|

|<endoftext>| when I was six years old , |<endoftext>|

|<endoftext>| I was six years old , I |<endoftext>|
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Appendix C

Removing absolute position information in GPT-2 trained on semantic features

For the GTP-2 model trained on the semantic features, small modifications had to be made

to the model architecture in order to remove all residual syntax. By default, GPT-2 encodes

the absolute positions of tokens in sentences. As word ordering might contain syntactic

information, we had to make sure that it could not be leveraged by GPT-2 by means of its

positional embeddings, yet keeping information about word proximity as it influences

semantics. We achieved it by slightly modifying the architecture of GPT-2: we first

removed the default positional embeddings, and added to the attention scores embeddings

encoding relative positions between input tokens. Indeed, just removing positional

embeddings would have led to a bag-of-words model. By adding these embeddings

encoding relative position to the attention scores a token will weight the attention granted

to another token depending on their distance. By doing so, information about absolute and

relative positions is removed from tokens’ embeddings as it is not directly added to the

tokens’ hidden states. The following explains how this operation was performed. Let cW =

(cw1 , . . . , cwm) be a sequence of m tokenized content words. cW is then fed to a nlayers

transformer with nheads of dimension dheads that first build an embedding representation

Ei, i = 1..m (of size d = dheads ∗ nheads) to which it appends (by default) a position

embedding pi, i = 1..m (of size d) for each token. To remove all syntactic content, the first

step is to discard the previously mentioned positional embeddings pi, i = 1..m. However

stopping here would only lead to a bag-of-word model where a given token might be

influenced similarly by an adjacent token or one far away. As a consequence, we had to

weight the attention score granted to a token depending on its relative distance.

The attention operation can be described as mapping a query (Q) and a set of

key-value (K, V) pairs to an output, where the query, keys, values, and output are all

vectors (generally packed into matrices). The output is computed as a weighted sum of the

values, where the weight assigned to each value is computed by a compatibility function of
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the query with the corresponding key. We thus modify the classical attention operation:

Attention(Q, K, V) = Softmax((QKT )/
√

dk)V

by adding the previously described relative positional embedding W in the attention

mechanisms:

Attention(Q, K, V) = Softmax((QKT + W)/
√

dk)V

To build W, we first defined the matrix D = (n − 1 + j − i)i,j=1..m ∈ Rm×m

(encoding the number of tokens separating two tokens in the input sequence shifted by

n − 1) for each input sequence cW , where n is the maximal input size. D is then embedded

using a lookup table that stores an embedding of size (dhead) for each possible value of D,

giving U (∈ Rm×m×dhead).

Finally, the weights assigned to the value vectors are adjusted using the embedded

relative distances between tokens W (∈ Rnheads×m×m), defined as:

Wi,j,k =
dhead∑
d=1

Ki,j,dUj,k,d

By doing so, we were able to weight words interactions depending on their relative

distance in the input sequence, while removing all absolute positional information from

tokens hidden-states.
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Appendix D

Convergence of the language models during training

Figure D1
GPT-2 convergence during training. The models represented in panels A to D were
trained on the integral features. Models in panels E and F were respectively trained on the
semantic and syntactic features. Models were trained until no further improvement could be
observed on the validation set.
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Figure D2
GloVe convergence during training. The models represented were trained on the
integral features (blue), semantic features (green) or syntactic features (red). Models were
trained until no further improvement could be observed on the validation set.
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Appendix E

Decoding individual syntactic features

Appendix 1-Fig.E1 shows the decoding accuracies of GloVe and GPT-2 models when

trained on one of the three datasets. The syntactic labels varies from encompassing all

categories (Morph+POS+NCN), to only one of them.

It is important to highlight that the decoding performance of the semantic models

on the syntactic decoding task primarily relies on Morph. In contrast, the decoding of the

Part-of-speech or the Number of Closing Nodes (NCN) are at chance level. This suggests

that information related to the gender or plurals might be encoded by both syntactic and

semantic embeddings. In addition, there are indeed more semantic labels compared to the

syntactic ones. Consequently, the space occupied by syntactic embeddings is relatively

smaller than that of semantic embeddings. As a result, it is relatively easier to project the

larger semantic space onto the syntactic embedding space.
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Figure E1
Decoding syntactic information from words embeddings. For each dataset and
model type (Glove and GPT-2), logistic classifiers were set up to decode either the syntactic
or the semantic categories of the words from the text of The Little Prince. Chance-level was
assessed using dummy classifiers and is indicated by black vertical lines. From top to
bottom: The syntactic label is i) the triplet (POS, Morph, NCN), ii) the POS, iii) the
NCN, iv) the Morph.
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Appendix F

Mapping NLM activations to brain data

Given two non-linear transformations φ1 (the neural language model that takes as input

the sentence and from which we extract latent representations) and φ2 (the brain that

takes as input the sentence and from which we extract voxels’ activations) and an input

sequence w = (w1, . . . , wM), we define Ys = φ2(w) ∈ RN×V and X = φ1(w) ∈ RM×d,

and we aimed at finding a linear transformation from X to Ys, where d is the dimension of

the model, V is the number of brain voxels, and N the number of fMRI scans acquired.

One issue is that X and Ys don’t have the same sampling frequency: X being defined at

word-level while Ys has been re-sampled at the fMRI acquisition frequency, every 2

seconds. To map X to Ys we first need to temporally align them, taking the dynamic of

the fMRI BOLD signal into account, and then determine a linear spatial mapping between

the convolved and re-sampled X and Ys. Using the standard model-based encoding

approach to modelling fMRI signals (Huth et al., 2016; Naselaris et al., 2011; Pasquiou

et al., 2022), we first convolve each column of X with the SPM haemodynamic kernel (K),

which corresponds to the profile of the fMRI BOLD response following a Dirac stimulation,

and then sub-sampled the signal to match the sampling frequency of Ys, giving

X̃ = Sub(K ◦ X), with Sub the sub-sampling operator. Finally, we learn the linear spatial

mapping between X̃ and Ys using a nested cross-validated L2-regularized (aka Ridge)

univariate linear encoding model. More precisely, for each voxel yv
s , we learn a linear

projection β̂v
s from X̃ to yv

s using a nested cross-validated L2-regularized univariate linear

encoding model whose general solution is given by:

β̂v
s = arg min

βs

∥yv
s − βT

s X∥2 + λ∥βs∥2
2 i.e. β̂s = Ridge(X, Ys)

The latter stage resulted for each model and each run into a design matrix X of size N × d.

Given a neural language model, we gave the associated nine design-matrices to a nested

cross-validated L2-regularized univariate linear encoding model to fit the fMRI brain data

(of size N × V ). To evaluate model performance and the optimal regularization parameter

D
ow

nloaded from
 http://direct.m

it.edu/nol/article-pdf/doi/10.1162/nol_a_00125/2162880/nol_a_00125.pdf by guest on 14 O
ctober 2023



LANGUAGE MODELS SHOW BRAIN SENSITIVITY TO SEMANTICS, SYNTAX AND
CONTEXT 63

λ∗, we used a nested cross-validation procedure: we split each participant’s dataset into

training, validation and test sets, such that the training set included 7 out of the 9

experiment runs, and the validation and test sets contained one of the two remaining

sessions. We evaluated model performance using Pearson correlation coefficient R, which is

a measure of the linear correlation between encoding models’ predicted time-courses and

the actual time-courses. For each subject and each voxel, we first determined λ∗ by

comparing Rvalid for 10 different values of λ, linearly spaced in log-scale between 10−3 and

104. We then calculated Rtest for λ∗. Finally, we repeated this procedure 9 times, using

cross-validation. This resulted in 9 Rtest values that we then averaged to produce a single

Rtest map for the participant. We evaluated the quality of the mapping for subject s in

voxel v using Pearson correlation:

R(X)v
s = Corr(Yv

s , β̂v
s X)
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Appendix G

The Basic Features baseline model

To assess the specific impact of NLMs’ embeddings, the maps shown in Fig.3 report

increases in R values relative to a baseline model which comprised three variables of

non-interest:

• acoustic energy (root mean squared of the audio signal sampled every 10ms)

• word offsets (one event at each word offset)

• log of the lexical frequency of each word (modulator of the words events).

More generally, as we looked at increases in R scores between models, the baseline

model was appended to all other models studied in order to cancel out the effects of the 3

features of non-interest. Appendix 1-Fig.G1 below displays the cross-validated correlations

obtained from this baseline model.

Figure G1
Brain regions showing significant activations for the Basic Features baseline
model. Using the Basic Features (BF) baseline model to fit fMRI brain data, we displayed
voxels where there was a significant correlation (voxel-wise thresholded group analyses;
N=51 subjects; corrected for multiple comparisons with a FDR approach p < 0.005; zF DR is
the FDR threshold on the z-scores). The effects from the Basic Features baseline model
were discarded from all the analyses in the paper.
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Appendix H

Brain fit of GloVe and GPT-2 when trained on the Integral Features

Appendix 1-Fig.H1 shows the increase in R, relative to the baseline model, provided by the

GloVe and GPT-2 models trained on the Integral Features, that is, the intact text.

Figure H1
Brain regions showing significant R score increases compared to the Baseline
Model for GloVe and GPT-2 when trained on the Integral Features. Increases
in R scores relative to the baseline model for GloVe (a non contextual model) and GPT-2
(a contextual model), trained on the Integral features (voxel-wise thresholded group
analyses; N=51 subjects; corrected for multiple comparisons with a FDR approach
p < 0.005; zF DR is the FDR threshold on the z-scores).
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Appendix I

R Scores Distribution for GloVe and GPT-2 Trained on Semantic or Syntactic Features

Appendix 1-Fig.I1 below shows the averaged (across participants) voxels distribution, of

the increase in R scores obtained from GloVe and GPT-2 models on semantic or syntactic

features, relative to the baseline model.

Figure I1
Distribution of R scores derived from GloVe and GPT-2 semantic and
syntactic embeddings. The 90th-percentile of the R scores distribution is highlighted
with a vertical black line and used to select voxels for the peak regions analyses.
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Appendix J

Models trained on Semantic features vs models trained on Syntactic features

Appendix 1-Fig.J1 shows the differences in R scores between the semantic and syntactic

models, for Glove and GPT-2. Correcting for multiple comparisons (N=51; p < 0.005 after

FDR correction), we observed significant differences in favor of the syntactic embeddings in

the STG, and significant differences in favor of the semantic embeddings in the pMTG, the

AG and the IFS and SFS.

Figure J1
Comparison of the models trained on Semantic features with the models
trained on Syntactic features. Significant R score differences between the models
trained on Semantic features and the models trained on Syntactic features. The brain
regions that are better fitted by the former model appear in green, while the regions better
fitted by the latter model appear in red. (All these maps represent voxel-wise thresholded
group analyses; N=51 subjects; corrected for multiple comparisons with a FDR approach
p < 0.005).
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Appendix K

Semantic and syntactic peak regions at the subject-level

Appendix 1-Fig.K1 shows the peak regions analysis for GloVe and GPT-2 for the first 10

subjects. The figure shows syntactic peak regions around temporal regions and the dmPFC

and semantic peak regions around the pMTG, AG, IFS and Precuneus. Appendix 1-Fig.K4

shows the distribution of Jaccard scores across subjects, separating the left hemisphere (in

red) from the right (in blue).
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Figure K1
Peak regions of syntax and semantics across subjects. Bilateral spatial
organisation of syntax and semantics highest R scores for the first 10 English subjects of
The Little Prince fMRI corpus. Voxels whose R score belong in the 10% highest R scores
(in green for models trained on the semantic features, and in red for models trained on the
syntactic features) are projected onto brain surface maps for GloVe and GPT-2 (overlap in
yellow and other voxels in grey). Jaccard score for each hemisphere are computed, i.e. the
ratio between the size of the intersection and the size of the union of semantics and syntax
peak regions.

Appendix 1-Fig.K2 and Appendix 1-Fig.K3 show that the subject-level and

group-level analyses are coherent with syntactic peak regions around the Temporal regions,

the IFG and dmPFC, and semantic peak regions around the TPJ and the
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Precuneous/posterior Cingulate gyri.

Figure K2
Overlap between Harvard-Oxford ROIs and syntactic/semantic peak regions,
averaged across subjects (for GloVe). Percentage of voxels of the Harvard-Oxford
ROIs that belong to the syntactic peak regions (left) and semantic peak regions (right),
averaged across the 51 English subjects. The error bars display the standard error to the
mean. Regions in red were identified as syntactic peak regions in the group-level analysis,
while regions in green were identified as semantic peak regions. Regions in blue belong to
both.
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Figure K3
Idem but for GPT-2

Figure K4
Jaccard scores distribution across subjects. Distribution of the Jaccard scores across
the 51 English participants, in red for the left hemisphere and blue for the right.
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Appendix L

Layer-wise analysis

Figure L1
Layer-wise analysis of the models trained on integral/semantic/syntactic
features. Impact of layer depth on the predictive power of GPT-2 when trained on the
integral features (blue), the syntactic features (red) and the semantic features (green).

We further demonstrate the relevance of using the late middle layers in the

transformer models’ architecture. We display the impact of layer depth on the, per-region,

predictive power of BERT models1 having different total number of layers.

1 made available by GOOGLE at https://github.com/google-research/bert
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Figure L2
Impact of layer depth on the, per-region, predictive power of BERT models
having different total number of layers. Impact of layer depth on the, per-region,
predictive power of BERT models. A) 2-layer BERT, B) 4-layer BERT, C) 6-layer BERT,
D) 8-layer BERT, E) 10-layer BERT, F) 12-layer BERT. Brain scores (median R values)
were computed across voxels inside brain regions defined by the Harvard-Oxford atlas; each
line corresponds to a region.
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Appendix M

Meta-Analysis based on Neurosynth

We used the Neurosynth database (https://github.com/neurosynth/neurosynth) to perform

a meta-analysis of brain regions that appeared in fMRI articles containing the words

’syntactic’ or ’semantic’ in their abstract. Using a frequency threshold of 0.05, the keyword

semantic yielded 626 articles, while syntactic yielded 128 articles.

The meta.MetaAnalysis function from the neurosynth package was then used to

create association test maps for syntax and semantics. These maps display voxels that are

reported more often in articles that mention the keyword than articles that do not. Such

association test maps indicate whether or not there’s a non-zero association between

activation of the voxel in question and the use of a particular term in a study. We fused

the maps associated to syntactic and semantic, thresholded with a False Discovery Rate set

to 0.01, to produce Fig.M1.

In Fig.M1, we present the outcome of a meta analysis of the literature based on the

search for the keywords ’syntactic’ and ’semantic’ in the Neurosynth database. This

analysis, albeit somewhat simplistic, reveals the brain regions most often associated with

syntax and semantics.
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Figure M1
Association maps for the terms “semantic” and “syntactic” in a
meta-analysis using Neurosynth (http://neurosynth.org) The association test map for
syntactic (resp. semantic) displays voxels that are reported more often in articles that
include the term syntactic (resp. semantic) in their abstracts than articles that do not
(FDR correction of 0.01).
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Appendix N

*

Brain Regions abbreviations

• STG: superior Temporal Gyrus

• STS: superior Temporal Sulcus

• TP: Temporal Pole

• IFG: inferior Frontal Gyrus

• IFS: inferior Frontal Sulcus

• DMPC: Dorso-Medial Prefrontal Cortex

• pMTG: posterior Middel Temporal Gyrus

• TPJ: temporo-parietal junction

• pCC: posterior Cingulate Cortex

• AG: Angular Gyrus

• SMA: Supplementary Motor Area
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