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Abstract

Psychologists often model detection or discrimi-
nation decisions as being influenced by two com-
ponents: perceptual discriminability and response
bias. In the signal detection framework, these are
estimated by d′ and β. Other, non-parametric
parameters, A′ and B′′

D
, have also been pro-

posed. This note provides the code to compute
those parameters with the statistical software R

(http://www.r-project.org).

Introduction

Consider the following three situations :

• In a signal detection test, the subject is pre-
sented with a series of trials in which he must
decide if a target signal (e.g. a faint tone in a
noisy background) is present or absent.

• In a memory recognition test, the subject is
first trained to memorize some stimuli. Then,
in a subsequent test phase, he is presented with
a series of stimuli and asked to decide if they
are ‘old’ or ‘new’ items.

• In a discrimination task, the subject is pre-
sented with pairs of stimuli, and for each pair,
asked to tell whether the stimuli are the same
of different.

In all three cases, the trials belong to two cat-
egories (Y=target present; N=target absent). So
do the responses of the subjects (Y=yes; N=no).
Therefore, they are four possible combinations of
trial type and response (see Table 1): A ‘Hit’ oc-
curs when the subject correctly detects a signal (or
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correctly recognize an old item, or correctly dis-
criminate different stimuli...). A ‘Miss’ occurs when
the subject fails to detect the presence of the target
signal. A ‘False alarm’ (abbreviated as ‘FA’) occurs
when the subject reports the target while it is not
present. Finally, a ‘Correct rejection’ (‘CR’) occurs
when the subject correctly reports no target.

Response
Trial Y N
Y Hits Misses
N FA CR

Table 1: Table of scores

The data of a single participant can can be sum-
marized in a table such as Table 1, which reports
the counts of the different types of trial-response
combinations. The four figures in the summary ta-
ble are not independent:

{

Hits + Misses = total number of ’Y’ trials
FA + CR = total number of ’N’ trials

Therefore, the data are often summarized by the
two independent numbers:

{

Hit rate = Hits/(Hits+Misses)
FA rate = FA/(FA+CR)

The percentage of correct responses is:

%correct = (Hits + CR)/(Hits+Misses+FA+CR)

If there are as many trials of types ‘Y’ and ‘N’,
the percentage of correct responses is simply the
mean of the Hit and FA rates. The percentage of
correct responses is a fonction of discriminability
and bias. To introduce these notions, it is useful to
plot the subject’s performance on a graphics with
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Figure 1: The (fa,hit) unit square (left) and the percentage correct responses as a function of (fa,hit)
(right)

FA and Hit rates as coordinates, as shown on Fig-
ure 1.

Psychologists model binary answers of human
participants as being influenced by two distinct fac-
tors: (a) a perceptual discrimination component
and (b) a response bias. For example, two subjects
with similar perceptual discrimination capabilities
can have different propensions to answer ‘yes’ or
‘no’. Or, in one individual, the response bias can
be manipulated by varying the costs/benefits asso-
ciated to the responses.

Consider the following three examples of extreme
behaviors:

1. A subject (a) has Hit and FA rates at 100%
and 0% respectively; he is considered to dis-
criminate perfectly and have no response bias.

2. A subject (b) systematically answer ’Yes’: his
Hit and Fa rates are both at 100%. One would
say that he has a strong response bias, and no
evident discrimination capacity.

3. A subject (c) has Hit and FA rates both at
50%; he will be considered to have no response
bias, and no discriminability either (his score
falls on the “chance diagonal”).

To disentangle the two components (bias and dis-
criminability) in a given subject, several measures
have been proposed, that improve on the simple
percentage of correct responses. The most used are
d′ and β and the non-parametric A′ and B′′

D
[1].

d′ and β originate from the signal detection the-
ory framework. d′ reflects the distance between the

two distributions: signal, and signal+noise and cor-
responds to the Z value of the hit-rate minus that of
the false-alarm-rate. Though Z values can have any
real value, normally distributed ones are between -2
and 2 about 95% of the time, so differences of twice
that would be rare. The value for β is the ratio of
the normal density functions at the criterion of the
Z values used in the computation of d’. This reflects
an observer’s bias to say ‘yes’ or ‘no’ with the un-
biased observer having a value around 1.0. As the
bias to say ‘yes’ increases, resulting in a higher hit-
rate and false-alarm-rate, beta approaches 0.0. As
the bias to say ‘no’ increases, resulting in a lower
hit-rate and false-alarm-rate, beta increases over
1.0 on an open-ended scale [2].

A′ and B′′

D
are non-parametric estimates of dis-

criminability and bias. Given a point in the (fa,hit)
unit square, A′ is defined as the sum of the area of
B and half the areas of A1 and A2 (cf. Fig. 4). The
formula for computing A′ and B′′

D
are:

If hit>fa,

A′ = 1/2 +
(hit − fa) ∗ (1 + hit − fa)

4 ∗ hit ∗ (1 − fa)

If fa>hit,

A′ = 1/2 −

(fa − hit) ∗ (1 + fa − hit)

4 ∗ fa ∗ (1 − hit)

and,

B′′

D
=

(1 − hit) ∗ (1 − fa) − hit ∗ fa)

(1 − hit) ∗ (1 − fa) + hit ∗ fa

We will not detail the rationale behind the con-
struction of these parameter (see [1]). Suffice to say
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Figure 4: Areas involved in the computation of A′

that an A′ near 1.0 indicates good discriminability,
while a value near 0.5 means chance performance.
A B′′

D
equal to 0.0 indicates no bias, positive num-

bers represent conservative bias (i.e. a tendency
to answer ’no’), negative numbers represent liberal
bias (i.e. a tendency to answer ’yes’). The maxi-
mum absolute value is 1.0.

The isolevel curves for the parameters that esti-
mate discriminability are shown on figure 2. They
can be compared with the rigth panel of Figure 1.
The isolevel curves for the bias estimates d′ and B′′

D

are shown on figure 3.

R functions

Here is the R code for four functions dprime, beta,
aprime and bppd that compute the parameters as
a function of Hit and FA rates:

dprime <- function(hit,fa) {

qnorm(hit) - qnorm(fa)

}

beta <- function(hit,fa) {

zhr <- qnorm(hit)

zfar <- qnorm(fa)

exp(-zhr*zhr/2+zfar*zfar/2)

}

aprime <-function(hit,fa) {

a<-1/2+((hit-fa)*(1+hit-fa) /

(4*hit*(1-fa)))

b<-1/2-((fa-hit)*(1+fa-hit) /

(4*fa*(1-hit)))

a[fa>hit]<-b[fa>hit]

a[fa==hit]<-.5

a

}

bppd <-function(hit,fa) {

((1-hit)*(1-fa)-hit*fa) /

((1-hit)*(1-fa)+hit*fa)

}

Hit and FA rates can be passed as single numbers
or as vectors. In the latter case, the function will
return a vector of the same length. This is useful
to get the parameters for a set of subjects. Note
the trick in aprime to handle the two cases fa>hit,
hit>fa without resorting to a loop on the vectors’
elements.

Practical usage

We suppose that the code given above for the
four functions is saved in a text file named, say,
discri.R. To be able to access these functions, the
first command to run is:

source(’discri.R’)

If you have already computed Hit and FA rates
for each subject, you can enter them into two R
vectors hit and fa, using the ‘c’ operator:

hit <- c(.7,.8,.6)

fa <- c(.2,.1,.3)

Then plot the performances and compute the pa-
rameters:

plot(fa,hit,xlim=c(0,1),ylim=c(0,1))

aprime(hit,fa)

bppd(hit,fa)

dprime(hit,fa)

beta(hit,fa)

If, rather, the rates are saved in a text file
data.txt in a tabular format such as:

s1 0.7 0.2

s2 0.8 0.1

s3 0.6 0.3

You would then rather use:
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Figure 2: Isolevel plots for the discriminability parameters
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Figure 3: Isolevel plots for the bias parameters
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a<-read.table(’data.txt’)

hits <- a$V2;

fa <- a$V3;

Finally, only raw data may be available, for ex-
ample, as a table with one row per trial, with the
three space-separated columns corresponding re-
spectively to the subject code, the trial type, and
the response of the subject:

s1 S Y

s1 S N

s1 N Y

s1 N N

s1 N Y

...

s2 S Y

s2 S Y

s2 N Y

s2 S N

...

In this case, to compute subjects’ hit and fa rates:

a<-read.table(’samp.dat’,

col.names=c(’suj’,’target’,’resp’))

attach(a)

b<-table(target,resp,suj)

suj <- names(b[1,1,])

hit <- b[’S’,’Y’,]/(b[’S’,’Y’,]+b[’S’,’N’,])

fa <- b[’N’,’Y’,]/(b[’N’,’Y’,]+b[’N’,’N’,])

You can explore ‘b’ and check that b[’S’,’Y’,]
= Hits, b[’S’,’N’,] = Misses, b[’N’,’Y’,] =
False alarms, and b[’N’,’N’,] = Correct rejec-
tions. Whence, the formula for hit and fa.

Explorations

The isodiscriminability curves were obtained using
the contour function:

a<-0:10/10

contour(z=outer(a,a,"aprime"))

contour(z=outer(a,a,"dprime"))

In figure 5, we looked at the behavior of percent
correct, A′ and d′ when the fa rate was set to a
fixed value of 5%, and the hit rate varied from 0%
to 100%. The code was the following:

hit<-0:20/20

fa<-rep(.05,21)

pairs(cbind(hit,

correct=correct(hit,fa),

aprime=aprime(hit,fa),

dprime=dprime(hit,fa)))
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Figure 5: Relationship between percent correct, A′ and d′ for a constant FA rate=0.05
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