Interpreting the coefficients of linear models in a 2x2 design
Posted on août 25, 2012 in stats
Interpreting the coefficients of linear models in a 2x2 design
Christophe Pallier
2012-08-25
Creating a 2x2 factorial design
Let us create a 2x2 design, resulting from the crossing of two binary factors “A” and “B”:
A <- gl(2, 1, 4, labels=c('a1', 'a2'))
B <- gl(2, 2, 4, labels=c('b1', 'b2'))
means <- c(4, 6, 10, 15)
tapply(means, list(A=A, B=B), mean)
## B
## A b1 b2
## a1 4 10
## a2 6 15
par(las=1)
interaction.plot(A, B, means,
ylim=c(0, 17),
legend=T,
type='b',
pch=16,
bty="l")
grid()
To obtain the main effects of A and B:
(Ameans <- tapply(means, list(A), mean))
## a1 a2
## 7.0 10.5
diff(Ameans) # main effect of A
## a2
## 3.5
(Bmeans <- tapply(means, list(B), mean))
## b1 b2
## 5.0 12.5
diff(Bmeans) # main effect of B
## b2
## 7.5
Additive model
treatment coding (contr.treat)
Let us fit an additive model using the formula “A * B
”:
summary(modadd <- lm(means ~ A + B))
##
## Call:
## lm(formula = means ~ A + B)
##
## Residuals:
## 1 2 3 4
## 0.75 -0.75 -0.75 0.75
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.250 1.299 2.502 0.242
## Aa2 3.500 1.500 2.333 0.258
## Bb2 7.500 1.500 5.000 0.126
##
## Residual standard error: 1.5 on 1 degrees of freedom
## Multiple R-squared: 0.9682, Adjusted R-squared: 0.9046
## F-statistic: 15.22 on 2 and 1 DF, p-value: 0.1783
Notice that the estimates of the coefficients labeled Aa2
and Bb2
correspond to the main effects of A (3.50) and B (7.50). This is because, in R, factors use by default a contr.treatment
parametrization. You can see that using the contrasts
function and by displaying the matrix of the linear model:
getOption('contrasts')
## unordered ordered
## "contr.treatment" "contr.poly"
contrasts(A)
## a2
## a1 0
## a2 1
contrasts(B)
## b2
## b1 0
## b2 1
model.matrix(modadd)
## (Intercept) Aa2 Bb2
## 1 1 0 0
## 2 1 1 0
## 3 1 0 1
## 4 1 1 1
## attr(,"assign")
## [1] 0 1 2
## attr(,"contrasts")
## attr(,"contrasts")$A
## [1] "contr.treatment"
##
## attr(,"contrasts")$B
## [1] "contr.treatment"
An observation can belong to one of the four classes a1b1, a1b2, a1b2 or a2b2. The class can be indicated by a coding vector, as shown below.
class coding vector expected_value
a1b1 1 0 0 intercept
a2b1 1 1 0 intercept + a2
a1b2 1 0 1 intercept + b2
a2b2 1 1 1 intercept + a2 + b2
The cross-product of the coding vector by the estimated coefficients yields the expected value given the class.
deviation coding (contr.sum)
It is possible to use a different coding scheme (aka “parametrization”), for example “deviation coding” using contr.sum
:
contr.sum(2)
## [,1]
## 1 1
## 2 -1
contrasts(A) <- contr.sum(2)
contrasts(B) <- contr.sum(2)
modadd2 <- lm(means ~ A + B)
model.matrix(modadd2)
## (Intercept) A1 B1
## 1 1 1 1
## 2 1 -1 1
## 3 1 1 -1
## 4 1 -1 -1
## attr(,"assign")
## [1] 0 1 2
## attr(,"contrasts")
## attr(,"contrasts")$A
## [,1]
## a1 1
## a2 -1
##
## attr(,"contrasts")$B
## [,1]
## b1 1
## b2 -1
summary(modadd2)
##
## Call:
## lm(formula = means ~ A + B)
##
## Residuals:
## 1 2 3 4
## 0.75 -0.75 -0.75 0.75
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.75 0.75 11.667 0.0544 .
## A1 -1.75 0.75 -2.333 0.2578
## B1 -3.75 0.75 -5.000 0.1257
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.5 on 1 degrees of freedom
## Multiple R-squared: 0.9682, Adjusted R-squared: 0.9046
## F-statistic: 15.22 on 2 and 1 DF, p-value: 0.1783
The coefficients now represent the distance to the global mean for a1 and b1.
Note: The aov
function also allows to display effect sizes, as deviations from the global average.
model.tables(aov(means ~ A + B))
## Tables of effects
##
## A
## A
## a1 a2
## -1.75 1.75
##
## B
## B
## b1 b2
## -3.75 3.75
Model with interaction
treatment coding
Next, let us fit a new model that includes the interaction term in addition to the main effects. To this end, we use the formula “A * B
” as a shorhand to “A + B + A:B
”:
contrasts(A) <- contr.treatment # setting the parametrization
contrasts(B) <- contr.treatment # back to the default
mod1 = lm(means ~ A * B)
summary(mod1)
##
## Call:
## lm(formula = means ~ A * B)
##
## Residuals:
## ALL 4 residuals are 0: no residual degrees of freedom!
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4 NA NA NA
## A2 2 NA NA NA
## B2 6 NA NA NA
## A2:B2 3 NA NA NA
##
## Residual standard error: NaN on 0 degrees of freedom
## Multiple R-squared: 1, Adjusted R-squared: NaN
## F-statistic: NaN on 3 and 0 DF, p-value: NA
(Remark that because the model fits perfectly the data, all inferential stats are NA)
The following plot shows the interpretation of the coefficients.
interaction.plot(A, B, means,
ylim=c(0, 17),
legend=F,
type='b',
pch=16,
bty="l")
eps <- 0.9
lines(c(1, 2), c(10, 12), lty=3)
arrows(1, 0, 1, 4, code=3, length=.1)
arrows(2, 4, 2, 6, code=3, length=.1)
arrows(1, 4, 1, 10, code=3, length=.1)
arrows(2, 12, 2, 15, code=3, length=.1)
text(1.08, 2, "Intercept")
text(2.08, 5, "A2")
text(1.08, 7.5, "B2")
text(2.08, 13, "A2:B2")
model.matrix(mod1)
## (Intercept) A2 B2 A2:B2
## 1 1 0 0 0
## 2 1 1 0 0
## 3 1 0 1 0
## 4 1 1 1 1
## attr(,"assign")
## [1] 0 1 2 3
## attr(,"contrasts")
## attr(,"contrasts")$A
## 2
## a1 0
## a2 1
##
## attr(,"contrasts")$B
## 2
## b1 0
## b2 1
model.tables(aov(means ~ A * B))
## Tables of effects
##
## A
## A
## a1 a2
## -1.75 1.75
##
## B
## B
## b1 b2
## -3.75 3.75
##
## A:B
## B
## A b1 b2
## a1 0.75 -0.75
## a2 -0.75 0.75
deviation coding
Let us now see what happens when we change the parametrization to deviation coding.
contrasts(A) <- contr.sum
contrasts(B) <- contr.sum
mod2 <- lm(means ~ A * B)
model.matrix(mod2)
## (Intercept) A1 B1 A1:B1
## 1 1 1 1 1
## 2 1 -1 1 -1
## 3 1 1 -1 -1
## 4 1 -1 -1 1
## attr(,"assign")
## [1] 0 1 2 3
## attr(,"contrasts")
## attr(,"contrasts")$A
## [,1]
## a1 1
## a2 -1
##
## attr(,"contrasts")$B
## [,1]
## b1 1
## b2 -1
model.tables(aov(means ~ A * B))
## Tables of effects
##
## A
## A
## a1 a2
## -1.75 1.75
##
## B
## B
## b1 b2
## -3.75 3.75
##
## A:B
## B
## A b1 b2
## a1 0.75 -0.75
## a2 -0.75 0.75